Hybrid VLC/IR-RF Communication for Smart Space Based on Multi-Functional Thermal Image Sensor Module
The project will target the building block actors by developing a hybrid VLC/IR-RF (Visual Light Communication/InfraRed-RadioFrequency) system based on an innovative integrated multi-functional thermal image sensor module with highly sensitive, low cost, and low power consumption.
This module will be capable of multi-purpose sensing for the monitoring of the energy consumption and control the environment in houses, buildings, and offices, which could avoid the privacy issues with ultra-low resolution (80×80) micro-bolometer, including presence detection, motion detection, and non-contact temperature detection. Also, the module will be able to run an image processing algorithm based on artificial intelligence with low computation and energy requirements, enabling counting of persons or objects, tracking, and distinction of objects such animals. The goal is to develop an integrated multi-functional module with the smallest and smartest infrared design from a single compact sensor.
Furthermore, the proposed VLC/IR-RF system will be able to integrate existing sensors to detect the physical and chemical information at home, building, and office.
Financial contract Nr. 97 from 03/11/2017
Deposit code: PN-III-P3-3.5-EUK-2017-02-0020
The total value of the budget: 1.490.400 Lei
The total value of the contract: 2.186.000 Lei
The start date of the contract: 03/11/2017
The end date of the contract: 31/10/2020
Coordinator: BEIA Consult (Romania)
Partners:
- National Nanofab Center (Korea)
- CREPAS Technologies (Korea)
- GeneTel Systems, Inc. (Korea)
Project Director: Victor Suciu (victor.suciu [at] beia [dot] ro, Peroni 16, Bucharest, Romania, Tel: +40374103902, Fax: +40213323006)
Project financed by UEFISCDI through the European and International Cooperation Program
International project web site
Project’s Phases and Activities
Phase I – Current state of the knowledge analysis – finalized December 31st, 2017
Activity I.1 – Current state of knowledge regarding technical and scientific efforts
The purpose of this activity was to present in detail the efforts made over time, regarding the standardization and improvement of VLC technology. Also, for a better understanding of the operating principle specific to VLC systems, a general description of the main components that make it possible to establish communications through light from the visible spectrum has been made.
Activity I.2 – Market and user requirements analysis regarding the implementation of VLC/IR-RF technology
Within this activity, a list of user requirements regarding the capabilities that should be provided by most VLC systems was made, taking into account the challenges that may be encountered during the development and implementation of the new communication technology, with increased attention being paid and regulations specific to its use.
Results:
– State of the art
– Market research
Phase II – The VLC/IR-RF system definition – finalized June 30rd, 2018.
Activity II.1 – Use cases
The purpose of this activity was the in-depth study of the VLC optical communications systems developed over time, which resulted in the final selection and presentation of the most notable systems in terms of the degree of innovation and the offered performances. Also, within this activity was described the use case proposed by the company Beia Consult International, Romania, which aims to introduce a new type of hybrid communications system on the market.
Activity II.2 – The hybrid communication system design for small and medium enterprises
Within this activity, the functional VLC architecture of the hybrid system has been described, which is intended to be developed in order to provide a new communication solution capable of meeting the demands of a high degree of complexity, specific to the business environment. In order to achieve this objective, the first step was to develop a laboratory test bench to deepen the knowledge regarding the proper use of communications established through optical channels, also taking into account some of the disruptive effects that may occur in such situations. In this case, the attention was focused on the number of data packets lost during the optical transmission, in the case of using the error-free encoding.
Results:
– Scientific and technical report
– Functional architecture achievement:
a) Functional architecture of the optical communications system
Phase III – Development of the methods and techniques of the hybrid VLC/IR-RF system – finalized December 31st, 2018.
Activity III.1 – Context analysis for sensors involved in the architecture of the communication system
Within this activity, all the components used for the development of the laboratory VLC test bench (development plates, sensors, LED sources, photodiodes) were described in detail, following the actual technical description of the final test bench, as well as the presentation of the results. experimental, to be made available in Activity III.2. Also, in this chapter will also be presented the protocols that have been chosen for the establishment of optical communication channels.
Activity III.2 – Development of the communication solution for low power devices
As part of this activity, a detailed presentation of the functioning of the laboratory test bench was made, and the experimental results obtained from several configurations were also made available. Also, the performance of the entire hybrid communications system was monitored through the use of professional measuring instruments. From the point of view of the communication protocols used to establish the information flow, in this case, as previously mentioned, the VLC protocols were chosen.
Activity III.3 – Methods for data processing
Within this activity were described the modalities of exporting the data packages that may come from the VLC components of the laboratory test bench that was developed at the headquarters of Beia Consult International – Bucharest. Attention was drawn to the presentation of three scenarios that have a high degree of popularity, namely:
– MQTT Client – Grafana – Arduino;
– LabVIEW Client – Arduino;
– Arduino Client – Firebase – Android.
Results:
– Scientific and technical report
– Laboratory testbed specific components:
a) The VLC transmitter based on the Arduino UNO development board:
b) The VLC receiver based on the Arduino UNO development board
c) Laboratory test bench for the hybrid VLC communications system based on Arduino UNO development boards
Phase IV – Designing and testing the VLC / IR-RF communications solution (01/01/2019-30/06/2019)
Activity IV.1 Design of the hybrid VLC / IR-RF communications system
Within this activity were presented the new components that will be integrated into the architecture of the hybrid VLC / IR-RF communications system, such as: Raspberry Pi 3B + development board, MCP 3208/3008 analog-digital converter, ADS 1115 converter, as well as PCF 8591. A set of general information on Raspberry communication interfaces and protocols – analog-to-digital converter and Raspbian operating system was also provided. the technical difficulties that were encountered and the means of remedying them were specified.
Activity IV.2 Realization and integration of hardware and software components specific to the communications system
Within this activity were presented the technical specifications characteristic of the new hybrid VLC / IR-RF communications system based on the ARM Cortex-A53 processor, the technical schemes for connecting the hardware devices, as well as the software component (source code) developed for each VLC component. Also, the test of the functioning of the optical laboratory communications bank was necessary, for the subsequent evaluation of the system’s performances.
Activity IV.3 Testing the performance of the hybrid communications system under conditions of intense use
In this activity, the focus was on testing the performance of the entire VLC / IR-RF optical communications system developed. In order to obtain conclusive results, the performance of each photodevice within the system was performed. Also in this section was presented the testing of the MQTT communication, which made it possible to monitor the real-time data packets and their graphical interpretation. Considering the numerous tests carried out, it has been found that using conventional electronic devices can not simultaneously achieve a high performance in terms of transmission rate and distance. As mentioned in the activity, the transfer rate obtained from the implementation and configuration of the new test bench was significantly higher compared to the transfer rate obtained in STEP III – Elaboration of the techniques and methods for the VLC / IR-RF system. In addition, the high utility and adaptability of Python programming language was highlighted, through which the system interconnection with other communication protocols was successfully achieved.
Results:
– Technical specification
– Testing report
– Laboratory testbed specific components:
a) The VLC transmitter based on the Raspberry Pi Model 3B + development board
b) The VLC receiver based on the Raspberry Pi Model 3B + development board
c) Laboratory test bench for the hybrid VLC communications system based on Raspberry Pi Model 3B + development boards
Phase V – Designing and testing the VLC / IR-RF sensor solution (01/07/2019-31/12/2019)
Activity V.1 Implementation of VLC / IR-RF communication interfaces
In this activity, the focus was on improving the performance of the optical communications system, considering the replacement of the optical emission source with a source consisting of a cluster of LEDs, along with all the hardware changes and the use of a high sensitivity optical receiver.
Activity V.2 Development of the module for monitoring and analyzing data from sensors
In this activity, brief descriptions were included for the newly introduced or used components, both in terms of hardware and software. Also, the description of the most significant source code blocks specific to each module was presented. Data monitoring was performed through the transmission module, while their processing took place on both modules specific to the optical communication system.
Activity V.3 Development the notification module in case of alarm
Within this activity was described the operation of the notification module in case of alarm, which was developed through the usage of Android Studio, software tool specially designed for the development of Android applications. Also, the interface of the developed application, as well as the facilities provided by it, was presented in detail.
Activity V.4 Testing and evaluation of the integrated system in a small or medium-sized enterprise
Within this activity the system was used inside a small / medium sized company. The correct data transmission was validated using advanced methods that involve interconnecting the VLC system with existing M2M protocols (specifically MQTT and Grafana).
Results
– Technical specification
– Testing report
– Android Monitoring and Control Application
– Laboratory testbed specific components:
- The VLC transmitter based on the Raspberry Pi Model 3B + development board + LED Matrix
- Laboratory test bench for the hybrid VLC communications system based on Raspberry Pi Model 3B + development boards
Phase VI – Hardware and software integration for the VLC / IR-RF system (01/01/2020-31/05/2020)
Activity VI.1 Realization and integration of the hardware components of the communication system
In this activity, the emphasis will be on describing how to make and integrate new hardware components specific to the VLC / IR-RF hybrid communications system. For a proper understanding of the changes that will be presented, there will be a brief description of the architecture of the communications system that was made in “STAGE V – Design and testing of the VLC / IR-RF communications solution”, which was submitted at the end last year.
Activity VI.2 Integration of interfaces for VLC / IR-RF sensors
During this stage, the new ways of implementing the communication interfaces will be described following the improvements that have been made to the VLC / IR-RF laboratory test bench from the hardware and software point of view, respectively.
Results:
- SSR integration at prototype level
- Test bench for the hybrid VLC communications system
- Sensors configuration
- Answer returned in VLC application
Phase VII – Testing and evaluating the integrated system (01/06/2020-31/10/2020)
Activity VII.1 Testing and evaluation of the integrated system in a small or medium enterprise
Within the current activity, the result obtained following the six previous stages specific to the time interval 2017-2020 was presented, which were briefly summarized for a good understanding of the strategy that was adopted in order to achieve the desired objective. Also, the testing of the final optical communication system was also performed in this activity, being provided the detailed evaluation of the performances obtained.
Activity VII.2 Evaluation of the new system from the point of view of the SmartCity concept – Modernization trend of the city of Bucharest
In this activity, the emphasis was on the evaluation of the new system developed by the company BEIA Consult International, from the point of view of the SmartCity concept, with direct reference to the modernization trend of the city of Bucharest. To properly understand this concept, the work was started by analyzing the current state of knowledge about the capabilities that VLC technology has in this regard. Once this approach was completed, the contribution that the final hybrid VLC / IR-RF communications system that had been obtained could have in this direction was actually presented. To validate this statement, an additional test of the VLC / IR-RF system was performed in an outdoor environment, under the direct influence of sunlight, which is for VLC technology one of the largest sources of communication channel disruption. The results of the outdoor testing were also provided in this activity.
Results:
– Scientific and technical report
– Testing report
– Laboratory testbed specific components:
a) The VLC transmitter based on the Raspberry Pi Model 3B + development board
b) The VLC receiver based on the Raspberry Pi Model 3B + development board
c) Final hybrid VLC communication system
Phase VIII – Reporting of economic effects (01/11/2020-31/10/2021)
Phase IX – Reporting of economic effects (31/10/2021-31/10/2022)
Phase X – Reporting of economic effects (01/11/2022-31/10/2023)
- 1st Workshop of EUREKA Project in Korea
Romanian partners met the Korean partners 05-07 April 2018 for the first workshop in Daejon, NNFC offices, and then visited partners Crepas and GeneTel
- Korean consortium meeting
The Korean consortium meeting-25th of July
- 2nd Workshop of EUREKA Project in Romania
Korean partners NNFC, Crepas and GeneTel attended the 2nd Workshop of EUREKA Project in Romania at BEIA in Bucharest 11-15 September 2018 and visited ICPE-CA.
- 3rd Workshop of EUREKA Project between Korea and Romania
BEIA Consult hosted the 3rd Workshop of EUREKA Project (VLC/IR-RF ) between Korea and Romania on 8-10 May 2019 in Bucharest, Romania.
More details here.
Publications:
- SIITME 2018: ”An Overview on Visible Light Communication used in Vehicle Applications”, Alina-Elena Marcu, Andrei Scheianu, și George Suciu, ISI Web of Science, IEEExplore
- ATOM-N 2018: ”Investigation of Power LEDs Response Time in Visible Light Communications” – Alina-Elena Marcu, Robert-Alexandru Dobre, Marian Vlădescu, ISI Web of Science, SPIE Digital Library
- SPIE Digital Library 2018: “Investigation of Power LEDs Response Time in Visible Light Communications”, Alina-Elena Marcu, Robert-Alexandru Dobre, Marian Vlădescu – [paper presented]
- ISFEE 2018: “Flicker Free Visible Light Communication Using Low Frame Rate Camera”, Alina-Elena Marcu, Robert-Alexandru Dobre, Marian Vlădescu – [paper presented]
- IEEEXplore, “Hybrid Vlc Communication System For Small To Medium Size Enterprises”, Andrei Scheianu, George Suciu, prezentat în cadrul conferinței ECAI 2019, 27-29 iunie 2019, Pitești, România;
- IEEEXplore, „Flicker Free Vlc System With Automatic Code Resynchronization Using Low Frame Rate Camera”, Alina Elena Marcu, Robert Alexandru Dobre, Octaviana Datcu, George Suciu, Jae Sub Oh.
- Article “Internet of Things and Communication Technology Synergy for Remote Services in Healthcare”, Springer 2019.
- Article “The future of bioenergy as a component of smart cities”, George Suciu, Rafaela Matei, presented on December 5 at the seventh edition of the “Smart Cities” International Conference (SCIC), December 5-6, 2019, Bucharest Romania.
Acknowledgement
This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, project number PN-III-P3-3.5-EUK-2017-02-0023 / ………….